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Abstract

Visual attributes, from simple objects (e.g., backpacks, hats) to soft-biometrics (e.g., gender, height, clothing) have
proven to be a powerful representational approach for many applications such as image description and human iden-
tification. In this paper, we introduce a novel method to combine the advantages of both multi-task and curriculum
learning in a visual attribute classification framework. Individual tasks are grouped after performing hierarchical
clustering based on their correlation. The clusters of tasks are learned in a curriculum learning setup by transferring
knowledge between clusters. The learning process within each cluster is performed in a multi-task classification setup.
By leveraging the acquired knowledge, we speed-up the process and improve performance. We demonstrate the effec-
tiveness of our method via ablation studies and a detailed analysis of the covariates, on a variety of publicly available
datasets of humans standing with their full-body visible. Extensive experimentation has proven that the proposed

approach boosts the performance by 4% to 10%.
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1. Introduction

Vision as reception. Vision as reflection. Vision as projection.
—Bill Viola, note 1986

When we are interested in providing a description of an
object or a human, we tend to use visual attributes to
accomplish this task. For example, a laptop can have a
wide screen, a silver color, and a brand logo, whereas
a human can be tall, female, wearing a blue t-shirt and
carrying a backpack. Visual attributes in computer vi-
sion are equivalent to the adjectives in our speech. We
rely on visual attributes since (i) they enhance our un-
derstanding by creating an image in our head of what
this object or human looks like; (ii) they narrow down
the possible related results when we want to search for
a product online or when we want to provide a suspect
description; (iii) they can be composed in different ways
to create descriptions; (iv) they generalize well as with
some fine-tuning they can be applied to recognize ob-
jects for different tasks; and (v) they are a meaningful
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semantic representation of objects or humans that can
be understood by both computers and humans. How-
ever, effectively predicting the corresponding visual at-
tributes of a human given an image remains a challeng-
ing task. In real-life scenarios, images might be of low-
resolution, humans might be partially occluded in clut-
tered scenes, or there might be significant pose varia-
tions.

In this work, we introduce CILICIA (Currlculum
Learning multltask Classlfication Attributes) to address
the problem of visual attribute classification from im-
ages of standing humans. Instead of using low-level
representations, which would require extracting hand-
crafted features, we propose a deep learning method to
solve multiple binary classification tasks. CILICIA dif-
ferentiates itself from the literature as: (i) it performs
end-to-end learning by feeding a single ConvNet with
the entire image of a human without making any as-
sumptions about predefined connection between body
parts and image regions; and (ii) it exploits the ad-
vantages of both multi-task and curriculum learning.
Tasks are split into groups based on their labels’ cross-
correlation using hierarchical agglomerative clustering.
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Figure 1: Curriculum learning for multi-task classifi-
cation of visual attributes. Tasks are split into groups
by performing hierarchical clustering which are then
learned sequentially based on the cross-correlation of
the attributes within each group. Flickr photo by Jeffery
Scism is licensed under CC BY.

The groups of tasks are learned in a curriculum learning
scenario, starting with the one with the highest within-
group cross-correlation and moving to the less corre-
lated ones by transferring knowledge from the former
to the latter. The tasks in each group are learned in
a typical multi-task classification setup. Parts of this
publication appear in our previous work [1]. However,
in this work we have proposed an effective method to
obtain the groups of tasks using hierarchical agglom-
erative clustering, which can be of any number and not
just two groups (strongly/weakly correlated), conducted
additional experiments to analyze the covariates of the
proposed approach, benchmarked our method in an ad-
ditional dataset, and demonstrated the efficacy and ro-
bustness of our method by performing ablation studies
in Section 5.

When Vapnik and Vashist introduced the learning us-
ing privileged information (LUPI) paradigm [2], they
drew inspiration from human learning. They observed
how significant the role of an intelligent teacher was
in the learning process of a student, and proposed a
machine learning framework to imitate this process.
Employing privileged information from an intelligent
teacher at training time has recently received signifi-
cant attention from the scientific community with re-
markable results in areas ranging from object recogni-
tion [3, 4, 5, 6] to biometrics [7, 8, 9].

Our work also draws inspiration from the way stu-
dents learn in class. First, students find it difficult to
learn all tasks at once. It is usually easier for them
to acquire some basic knowledge first, and then build
on top of that, by learning more complicated concepts.
This can be achieved by learning in a hierarchical man-
ner, which is commonly employed in the literature

[10, 11, 12], or with a curriculum strategy. Curriculum
learning [13, 14, 15] (presenting easier examples before
more complicated and learning tasks sequentially, in-
stead of all at the same time) imitates this learning pro-
cess. It has the advantage of exploiting prior knowledge
to improve subsequent classification tasks but it cannot
scale up to many tasks since each subsequent task has
to be learned individually. However, to maximize stu-
dents’ understanding a curriculum might not be suffi-
cient by itself. Students also need a teaching paradigm
that can guide their learning process, especially when
the task to be learned is challenging. The teaching
paradigm in our method is the split of visual attribute
classification tasks that need to be learned by perform-
ing hierarchical agglomerative clustering. In that way,
we exploit the advantages of both multi-task and cur-
riculum learning. First, the ConvNet learns the group
of tasks with the strongest intra cross-correlation in a
multi-task learning setup, and once this process is com-
pleted, the weights of the respective tasks are used as
an initialization for the more diverse tasks. During the
training of the more diverse tasks, the prior knowledge
obtained is leveraged to improve the classification per-
formance. An illustrative example of our method is de-
picted in Figure 1.

In summary, this paper has the following contribu-
tions. First, we introduce CILICIA, a novel method
of exploiting the advantages of both multi-task and
curriculum learning by splitting tasks into groups by
performing hierarchical agglomerative clustering. The
tasks of each subgroup are learned in a joint manner.
Thus, the proposed method learns better than learning
all the tasks in a typical multi-task learning setup and
converges faster than learning tasks one at a time. Sec-
ond, we propose a scheme of transferring knowledge
between the groups of tasks which speeds up the con-
vergence and increases the performance. We performed
extensive evaluations in three datasets of humans stand-
ing and achieved state-of-the-art results in all three of
them.

The remainder of the paper is organized as follows:
in Section 2, a review of the related work in visual at-
tributes, curriculum learning, and transfer learning is
presented. Section 3 presents CILICIA, the proposed
curriculum learning approach for multi-task classifica-
tion of clusters of visual attributes. In Section 4, ex-
perimental results are reported, a detailed analysis of
covariates is provided, and a discussion about the per-
formance and the limitations of the proposed approach
is offered. Finally, conclusions are drawn in Section 6.
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2. Related Work

Visual Attributes Classification: The first to investi-
gate the power of visual attributes were Ferrari and Zis-
serman [16]. They used low-level features and a prob-
abilistic generative model to learn attributes of differ-
ent types (e.g., appearance, shape, patterns) and seg-
ment them in an image. Kumar ef al. [17] proposed
an automatic method to perform face verification and
image search. They first extracted and compared “high-
level” visual features, or traits, of a face image that are
insensitive to pose, illumination, expression, and other
imaging conditions, and then trained classifiers for de-
scribable facial visual attributes (e.g., gender, race, and
eyewear). A verification classifier on these outputs is fi-
nally trained to perform face verification. In the work of
Scheirer et al. [18], raw attribute scores are calibrated
to a multi-attribute space where each normalized value
approximates the probability of that attribute appear-
ing in the input image. This normalized multi-attribute
space allows a uniform interpretation of the attributes
to perform tasks such as face retrieval or attribute-based
similarity search. Finally, attribute selection approaches
have been introduced [19, 20, 21] which select attributes
based on specific criteria (e.g., entropy). Zheng et al.
[21] formulated attribute selection as a submodular op-
timization problem [22] and defined a novel submodular
objective function.

Following the deep learning renaissance in 2012, sev-
eral papers [23, 24, 25] have addressed the visual at-
tribute classification problem using ConvNets. Part-
based methods decompose the image to parts and train
separate networks which are then combined at a fea-
ture level before the classification step. They tend to
perform well since they take advantage of spatial in-
formation (e.g., patches that correspond to the upper
body can better predict the t-shirt color than others that
correspond to other body parts). Zhang et al. [26]
proposed an attribute classification method which com-
bines part-based models in the form of poselets [27],
and deep learning by training pose-normalized Con-
vNets. Gkioxari er al. [28] proposed a deep ver-
sion of poselets to detect human body parts which were
then employed to perform action and attribute classifi-
cation. Zhu et al. [29] introduced a method for pedes-
trian attribute classification. They proposed a Con-
vNet architecture comprising 15 separate subnetworks
(i.e., one for each task) which are fed with images
of different body parts to learn jointly the visual at-
tributes. However, their method assumes that there is
a pre-defined connection between parts and attributes
and that all tasks depend on each other and thus, learn-

ing them jointly will be beneficial. Additionally, they
trained the whole ConvNet end-to-end despite the fact
that the size of the training dataset used was only 632
images. Based on our experiments, the only way to
avoid heavy overfitting in datasets of that size is by em-
ploying a pre-trained network along with fine-tuning of
some layers. Recycling pre-trained deep learning mod-
els with transfer learning (i.e., exploiting the discrim-
inative power of a network trained for a specific task
for a different problem or domain) is commonly used
in the literature with great success [30, 31, 32]. Fi-
nally, visual attributes have been employed recently for
re-identification [33, 34], pose estimation [35, 36], 3D
pose tracking [37], head pose estimation and landmark
detection [38], attribute mining and retrieval for cloth-
ing applications [39, 40, 41], zero-shot visual object cat-
egorization and recognition [42, 43], image annotation
and segmentation [44], as well as surveillance [45].
Curriculum Learning: Solving all tasks jointly is com-
monly employed in the literature [46, 47, 48] as it is fast,
easy to scale, and achieves good generalization. For
an overview of deep multi-task learning techniques the
interested reader is encouraged to refer to the work of
Ruder [49]. However, some tasks are easier than others
and also not all tasks are equally related to each other
[50]. Curriculum Learning was initially proposed by
Bengio er al. [13]. They argued that instead of employ-
ing samples at random it is better to present samples
organized in a meaningful way so that less complex ex-
amples are presented first. Pentina et al. [50] intro-
duced a curriculum learning-based approach to process
multiple tasks in a sequence and developed a method to
find the best order in which the tasks need to be learned.
They proposed a data-dependent solution by introduc-
ing an upper-bound of the average expected error and
employing an Adaptive SVM [51, 52]. Such a learning
process has the advantage of exploiting prior knowledge
to improve subsequent classification tasks but it cannot
scale up to many tasks since each subsequent task has
to be learned individually. Curriculum learning has also
been employed with great success on long short-term
memory (LSTM) networks [53, 54]. In parallel with
our work, Dong et al. [55] also proposed a multi-task
curriculum transfer technique to classify clothes based
on their attributes. To the best of our knowledge, the
method of Dong ef al. [55] and our method, are the
first to attempt formulating a curriculum learning strat-
egy for a deep attribute classification problem.
Transfer Learning: Deep transfer learning techniques
learn feature representations, which are transferable to
other domains, by incorporating the adaptation to a new
domain in the end-to-end learning process [56, 57]. The



idea of distilling knowledge in neural networks was ini-
tially introduced by Hinton et al. [58]. The authors
proposed a method to distill the knowledge of a complex
ensemble of models into a smaller model. The softmax
output of the ensemble is divided by a temperature pa-
rameter and the smaller model learns directly from that
“softened” output. Following that idea, Zhang et al.
[59] suggested a technique to perform action recogni-
tion in real-time. They transferred knowledge from the
teacher (an optical flow ConvNet) to the student (a mo-
tion vector ConvNet) by backpropagating the teacher’s
loss in the students’ network. Finally, Lopez-Paz et al.
[60] introduced generalized distillation; a method that
unifies the LUPI framework with the knowledge distil-
lation paradigm.

Finally, a very interesting prior work which focuses
on the correlation of visual attributes is the method
of Jayaraman et al. [61]. Aiming to decorrelate at-
tributes at learning time, the authors proposed a multi-
task learning framework with the property of resist-
ing the urge of sharing image features of correlated
attributes. Their approach disambiguates attributes by
isolating distinct low-level features for distinct proper-
ties (e.g., color for “brown”, texture for “furry”). They
also leveraged side information for properties that are
closely related and should share features (e.g., “brown”
and “red” are likely to share the same features). While
our work also leverages information from correlated at-
tributes in a multi-task classification framework, it mod-
els co-occurrence between different clusters of visual
attributes instead of trying to semantically decorrelate
them.

3. Methodology

In this section, we describe the proposed network
architecture which given images of humans as an in-
put, outputs visual attribute predictions. We then in-
troduce our approach for splitting attributes into clus-
ters. Finally, the proposed multi-task curriculum learn-
ing framework is introduced.

In our supervised learning paradigm, we are given tu-
ples (x;, y;) where x; corresponds to images and y; to the
respective visual attribute labels. The total number of
tasks will be denoted by T, and thus the size of y; for
one image will be 1 X T. Finally, we will refer to the
part of the network that solves the i group of tasks as
C;.

3.1. Multi-label ConvNet architecture

To mitigate the lack of training data we employ the
pre-trained VGG-16 [62] network. VGG-16, is the net-

work from Simonyan and Zisserman which was one of
the first methods to demonstrate that the depth of the
network is a critical component for good performance.
We selected VGG instead of a more modern network for
the reason that it is a simple and homogeneous architec-
ture, which despite its inefficiencies (e.g., large number
of parameters), is sufficient for solving multiple binary
image classification tasks. VGG-16 is trained on Im-
ageNet [63], the scale of which enables us to perform
transfer learning between ImageNet and our tasks of in-
terest. The architecture of the network we use is de-
picted in Figure 2. We used the first seven convolutional
layers of the VGG-16 network and dropped the rest of
the convolutional and fully-connected layers. The rea-
son behind this is that the representations learned in the
last layers of the network are very task dependent [32]
and thus, not transferable. Following that, for every task
we added a batch-normalized [64] fully-connected layer
with 512 units and a ReLU activation function. We
employed batch-normalization since it enabled higher
learning rates, faster convergence, and reduced overfit-
ting. Although shuffling and normalizing each batch has
proven to reduce the need of dropout, we observed that
adding a dropout layer [65] was beneficial as it further
reduced overfitting. The dropout probability was 75%
for datasets with less than 1,000 training samples and
50% for the rest. For every task, an output layer is added
with a softmax activation function using the categorical
Cross entropy.

Furthermore, we observed that the random initial-
ization of the parameters of the last two layers back-
propagated large errors in the whole network even if
we used different learning rates throughout our net-
work. To address this behavior of the network, which
is thoroughly discussed in the method of Sutskever et
al. [66], we “freeze” the weights of the pre-trained part
and train only the last two layers for each task in or-
der to learn the layer weights and the parameters of the
batch-normalization.

After we ensured that we can always overfit on the
training set, which means that our network is deep
enough and discriminative enough for the tasks of inter-
est, our primary goal was to reduce overfitting. Towards
this direction, we (i) selected 512 units for the fully con-
nected layer to prevent the network from learning sev-
eral weights; (ii) employed a small weight decay of 10~
for the layers that are trained; (iii) initialized the learn-
ing rate at 107> and reduced it by a factor of 5 every 100
epochs and up to five times in total; and (iv) augmented
the data by performing random scaling up to 150% of
the initial image followed by random crops, horizon-
tal flips and adding noise by applying PCA to the RGB
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Figure 2: Architecture of the ConvNet used in our framework for several groups of tasks. The VGG-16 pre-trained
part is kept frozen during training and only the weights of the last layers are learned. The different groups of tasks are
learned sequentially using a curriculum learning paradigm. However, when the latter groups of tasks are trained, the
tasks which have already been learned, contribute to the total cost function (Figure best viewed in color.)

pixel values as proposed by Krizhevsky ef al. [67]. At
test time, we averaged the predictions at three different
scales (100%, 125%, and 150%) of five fixed crops and
their horizontal flips (30 in total) to obtain the predicted
class label. This technique, which was also adopted in
the ResNet method of He et al. [68], proved to be very
effective as it reduced the variation on the predictions.

3.2. Group Split with Hierarchical Clustering

Finding the order in which tasks need to be learned so
as to achieve the best performance is difficult and com-
putationally expensive. Given some tasks #;,i = 1...T
that need to be performed, we seek to find the best order
in which the tasks should be performed so the average
error of the tasks is minimized:

T
1
inimize — Ve.s Vi) 1
minimize ;8@,, ) (1)

where S (#;) is the function that finds the sequence of the
tasks, ., y; are the prediction and target vectors for the
j™ task, and & is the prediction error.

However, the fact that a task can be easily performed
does not imply that it is positively correlated with an-
other and that by transferring knowledge the perfor-
mance of the latter will increase. Adjeroh et al. [70]
studied the correlation between various anthropometric

features and demonstrated that some correlation clus-
ters can be derived in human metrology, whereby mea-
surements in a cluster tend to be highly correlated with
each other but not with the measurements in other clus-
ters. The correlation between different sub-problems
was also exploited in the age estimation method of Niu
et al. [71] in an ordinal regression setup.

In this work, we seek to find: (i) which tasks (i.e., at-
tributes) should be grouped together so as to be learned
jointly, and (ii) which is the best sequence in which the
groups of tasks should be learned. We use the training
labels Y of size N X M where N the number of samples,
and M the number of attributes (i.e., ground truth la-
bels) to compute the Pearson correlation coefficient ma-
trix which is of size M x M. Each element in this matrix,
represents to what extent these two attributes are corre-
lated (e.g., the “gender” with the “hair length” will have
a higher value compared to “gender” with “age”).

We then employ the computed Pearson correlation
coefficient matrix to perform hierarchical agglomera-
tive clustering using the Ward variance minimization al-
gorithm. Ward’s method is biased towards generating
clusters of the same size and analyzes all possible pairs
of joined clusters, identifying which joint produces the
smallest within cluster sum of squared (WCSS) errors.
Assume that at an intermediate step, clusters s and ¢ are
to be merged to form cluster # = s U ¢. Then, the new
distance d(u, v) between cluster # and an already exist-
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Figure 3: Dendrogram illustrating the arrangement of clusters (left) and the pairwise correlation matrix, which is fed
to the clustering algorithm (right) of the visual attributes from the SoBiR dataset [69]. The sequence in which the
clusters of attributes are learned, is obtained by computing the total dependency of each task with the rest within its
cluster using Eq. (3). The curriculum learning of the clusters of visual attributes is then performed in a descending
order as described in Section 3.3. (Figure best viewed in color.)

ing (but yet unused) cluster v is defined as:

vl
?d (s, 1)2,
2
where s, t are the clusters which are joined into clus-
ter u, and T = |v| + |s| + |t|. Ward [72], points out that
this procedure facilitates the identification of that union
which has an objective function value “equal or better
than” any of the n(n — 1)/2 possible unions. An illustra-
tive hierarchical clustering of the visual attributes from
the SoBiR dataset [69] in the form of a dendrogram
is depicted in Figure 3. We observe that the proposed
method for task split yields clusters of visual attributes
which cohere with our semantic understanding and in-
tuition about which attributes might be related to each
other (e.g., gender with hair length, weight with muscle
build). In addition to the pairwise correlation matrix,
which also provides an insight into the relation of at-
tributes, the proposed approach exploits this correlation
between the attributes during the learning process.

By splitting the attributes into clusters using a WCSS
threshold 7 to cut the dendrogram horizontally, we have
identified which tasks should be grouped together so as
to be learned jointly. Following that, we now seek to
obtain the sequence in which the clusters of visual at-
tributes will be learned. To address this problem, we
propose to find the total dependency p; . of task #; . with
the rest within the cluster ¢, by computing the respec-
tive Pearson correlation coefficients but this time only
within the cluster as follows:

T
cov(yiys i)
o=y =1 T (3)
b )T (n,)

d(u,v) = \/ Md(v, 2+ wd(v, 0+

j=L#

Algorithm 1: Finding the learning sequence of at-
tribute clusters

Input : Training labels Y, WCSS threshold 7
1 P < compute Pearson correlation coefficient
matrix split based on labels Y
2 G « split into clusters using Eq. (2) along with P,
labels Y, and
3 for group g; in G do
S; « compute average of cross-correlation
within g; using Eq. (3)
5 end
S (gi) < compute learning sequence of clusters by
sorting S;’s in a descending order
Output: Learning sequence of clusters of visual
attributes S (g;)

=)

where o (y;, ) is the standard deviation of the labels y of
the task #; .. After we compute the total dependencies for
all the clusters formed, we start the curriculum learning
process in a descending order.

The process of computing the learning sequence of
attribute clusters, which is described in detail in Algo-
rithm. 1, is performed once before the training starts.
Since it only requires the training labels of the tasks to
compute the cross-correlations and perform the cluster-
ing, it is not computationally intensive. Finally, note
that the group split depends on the training set and it is
possible that different train-test splits might yield differ-
ent groups of tasks.



Algorithm 2: Multi-task curriculum learning train-
ing
Input : Training set X, training labels Y, learning
sequence of clusters S (g;) from
Algorithm 1
1 for group g; in S(g;) do

2 Initialize C; from rest of already trained groups
of tasks (if any)

3 C; « train model using (X, Y;) by minimizing
the loss in Eq. (5)

4 end

Output: Parameters of network containing all
groups of tasks

3.3. Multi-Task Curriculum Learning

In the scenario we are investigating, we solve mul-
tiple binary unbalanced classification tasks simultane-
ously. Throughout the paper, we use the terms multi-
label and multi-task interchangeably. This is because
we solve multiple classification tasks at the same time
(multi-task), and at the same time for each given image
we predict multiple binary labels which are not mutu-
ally exclusive (multi-label).

The proposed learning paradigm is described in Al-
gorithm 2. Similar to Zhu et al. [73], we employ the
categorical cross-entropy function between predictions
and targets, which for a single attribute ¢ is defined as
follows:

N M

L,:—%Z

1/ m; .

(T) “Ayi = j1-log(pij), (4)
=T 2\ =1 M
where 1[y; = j] is equal to one when the ground truth
of sample i belongs to class j, and zero otherwise, p; ; is
the respective prediction, which is the output of the soft-
max nonlinearity of sample i for class j, and the term
inside the parenthesis is a balancing parameter required
due to imbalanced data. The total number of samples
belonging to class j is denoted by M, N is the number
of samples and M the number of classes. The total loss
over all attributes is defined as Zthl As-L;, where A, is the
contribution weight of each parameter. For simplicity, it
is setto A, = 1/7. By setting A, in this way, there is an un-
derlying assumption that all tasks contribute equally to
the multi-task classification problem. To overcome this
limitation, a fully-connected layer with 7 units could
be added with an identity activation function after each
separate loss L, is computed. In that way, the respective
weight for each attribute in the total loss function could
be learned. However, we observed that for groups of

tasks that consist of a few attributes there was no differ-
ence in the performance, and thus we did not investigate
this any further.

Once the classification of the visual-attribute tasks
that demonstrated the strongest intra correlation is per-
formed, we use the learned parameters (i.e., weights,
biases, and batch normalization parameters) to initial-
ize the network for the less diverse groups of attributes.
The architecture of the network remains the same, with
the parameters of VGG-16 being kept “frozen”. The
weights of the tasks of previous groups of clusters con-
tinue to be learned with a very small learning rate of
107). Furthermore, by adopting the “supervision trans-
fer” technique of Zhang et al. [59] we leverage the
knowledge learned by backpropagating the following
loss:

Li=A-Li+(1-2-L, 5)

where L’ is the total loss computed during the forward
pass using Eq. (4) over only the current group of corre-
lated tasks and A is a parameter that controls the amount
of knowledge transferred. Since the parameters of the
network that correspond to already trained groups of
tasks keep being updated, the loss L, changes during
training of the tasks of interest each time. This en-
ables us to transfer the knowledge from groups of tasks
with stronger intra cross-correlation to groups which
demonstrated less intra cross-correlation. This tech-
nique proved to be very effective, as it enhanced the per-
formance of the parts of the network which are responsi-
ble for the prediction of less correlated groups of tasks,
and contributed to faster convergence during training.

4. Experiments

4.1. Datasets

To verify the effectiveness of the proposed method,
we conducted evaluations in three challenging datasets
containing standing humans, and thus tested our method
in almost all the possible variations that can be found in
the datasets used in the literature. We used the SoBiR
[69], VIPeR [74] and PETA [75] datasets. The selected
datasets are of varying difficulty and contain different
visual attributes and training set sizes. Some represen-
tative images are depicted in Figure 4.

SoBiR dataset: The recently introduced SoBiR dataset
[69] contains 800 images of 100 people. It comprises 12
soft biometric labels (e.g., gender, weight, age, height)
and four forms of comprehensive human annotation. In
our experimental investigation, we used the compara-
tive ground-truth annotations (e.g., taller/shorter instead



Figure 4: Example images from SoBiR, VIPeR and
PETA datasets.

of tall/short) instead of absolute binary. The main rea-
sons for this choice are: (i) relative binary annotations
have been shown to outperform categorical annotations
[69, 76]; and (ii) class labels were balanced for all soft
biometrics. A 80/10/10 train/validation/test split based
on human IDs is performed (so that only new subjects
appear at testing) and average classification results are
reported over five random splits.

VIPeR dataset: The VIPeR dataset [74] contains 632
low-resolution pedestrian image pairs taken from arbi-
trary viewpoints under varying illumination conditions.
Layne et al. [77] provided 21 visual-attribute annota-
tions which are used in our evaluation. We randomly
split VIPeR into non-overlapping training and testing
sets of equal sizes based on the human IDs. Following
the literature, we repeated this process six times (one
split for parameter tuning and the rest for evaluation
of our method) and average classification results are re-
ported.

PETA dataset: The PETA dataset [75] consists of
19,000 images gathered from 10 different smaller
datasets. Parameters such as the camera angle, view-
point, illumination, and resolution are highly variant,
which makes it a valuable dataset for visual-attribute
classification evaluation. It is divided in 9,500, 1,900,
and 7,600 images for training, validation, and testing,
respectively. Similar to [73], highly imbalanced at-
tributes are discarded and the remaining 45 binary vi-
sual attributes are employed.

4.2. Results on SoBiR

Implementation details: For the SoBiR dataset, the
batch size was set to 160. We split it into four clusters
containing 2, 5, 2, and 3 attributes by thresholding at
within cluster sum of squares 7 = 1.9 (Figure 3), trained
our models for 5,000 epochs, and set 4 = 0.25.

Evaluation results: Since the SoBiR dataset does not
have a baseline on attribute classification we reported

results using handcrafted features and an SVM classi-
fier as well as three different end-to-end learning frame-
works using our ConvNet architecture. In all cases, im-
ages were resized to 128 x 128. The features used for
training the SVMs consisted of: (i) edge-based features,
(ii) local binary patterns (LBPs), (iii) color histograms,
and (iv) histograms of oriented gradients (HOGs). To
preserve local information, we computed the aforemen-
tioned features in four blocks for every image resulting
in 540 features in total. Furthermore, we investigated
the classification performance when tasks are learned
individually (i.e., by backpropagating only their own
loss in the network), jointly in a typical multi-task clas-
sification setup (i.e., by backpropagating the average of
the total loss in the network), and using the proposed
approach. We report the classification accuracy (%) for
all 12 soft biometrics in Table 1. CILICIA is superior
in both groups of tasks to the rest of the learning frame-
works. Despite the small size of the dataset, ConvNet-
based methods perform better in all tasks compared to
an SVM with handcrafted features. Multi-task learn-
ing methods (i.e., multi-task and CILICIA) outperform
the learning frameworks when tasks are learned inde-
pendently since they leverage information from other
attributes. By taking advantage of the correlation be-
tween attributes, CILICIA demonstrated higher classi-
fication performance than a typical multi-task learning
scenario. However, estimating the “age” proved to be
the most challenging task in all cases as its classification
accuracy ranges from 58.5% to 64.5% when it is learned
individually using our ConvNet architecture. This poor
performance can be attributed to the fact that age es-
timation from images without facial traits is a largely
unsolved problem. In Figure 5, the convergence plots
for all four CILICIA groups are depicted and the fol-
lowing observations are made: (i) the first group (com-
prises only two attributes) after epoch 3,000, demon-
strates strong overfitting which proved to be inevitable
even when we experimented with smaller learning rates;
(i) Multi-Task learning demonstrated the highest loss
compared to the groups of the proposed method; and
(iii) as we move from the groups of attributes that are
strongly correlated to the rest by transferring knowledge
each time, the training loss becomes smaller and there
is less overfitting (if any). Note that the depicted losses
for the corresponding groups are averaged over the tasks
that belong to the cluster and thus, they can be compared
although the number of tasks in each group is not the
same.

Impact of color information: In this experiment, we
investigated to what extent the color information affects
the classification accuracy of the visual attributes. Since



Table 1: Classification accuracy of different learning
paradigms on the SoBiR dataset. In individual learn-
ing, each attribute is learned separately. In multi-task
learning, the average loss of all attributes is backprop-
agated in the network. In CILICIA, four clusters were
formed and attributes are in descending order based on
their intra cross-correlation. Results highlighted with
light purple indicate statistically significant improve-
ment using the paired-sample t-test.

Soft Label SVM  Individual Multi-Task  CILICIA
Learning Learning
Gender 72.1 80.4 79.6 85.2
Height 64.7 73.9 72.0 77.0
Age 58.5 62.6 61.9 64.5
Weight 57.7 67.7 71.0 74.1
Figure 57.8 68.7 67.1 67.3
Chest size 58.7 64.9 68.9 67.5
Arm thickness  60.1 72.0 73.1 73.7
Leg thickness 56.7 68.9 71.0 72.6
Skin color 59.2 66.8 67.6 68.7
Hair color 67.5 74.2 76.1 77.9
Hair length 71.8 78.9 79.2 85.9
Muscle build 58.5 73.3 74.5 75.8
Total Av. 61.9 71.0 71.3 74.2

we employed a network pre-trained on RGB images,
we fed each of the three color channels with the same
grayscale images. Figure 6 (left) summarizes the ob-
tained results. Visual attributes such as hair and skin
color were expected to have a drop in performance when
color information was absent. However, we observed
that weight and age were also affected as their accuracy
dropped by 8% and 11% respectively.

Impact of image resolution: The objective of this ex-
periment is to assess the impact of image resolution on
the classification performance. One of the major ad-
vantages of ConvNets (due to parameter sharing) is that
they do not need to have a fixed-size input and pre-
trained networks can be utilized with images of differ-
ent spatial size. This still holds for fully-connected lay-
ers since they are equivalent to convolution layers with
1x 1 kernel. Our ConvNet architecture was fed with im-
ages of varying resolutions starting from 32 x 32 up to
128 x 128 and average classification accuracies over all
attributes are reported. From the obtained results in Fig-
ure 6 (right), we draw the following observations. First,
images of higher resolution tend to perform better than
lower since they provide more spatial space for the con-
volutional operations. Second, when we experimented
with images of size 32 x 32, we observed that the norm
of the gradient started taking very high values which is a
common phenomenon during training ConvNets and is
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Figure 5: Convergence plot for all the groups of CILI-
CIA as well as Multi-Task learning on the SoBiR
dataset. Note that the numbering starts from the most
correlated to the least correlated cluster. (Figure best
viewed in color.)

referred to as the exploding gradients problem [78]. In
our case, the reasons for the explosion of gradients were
the small image size in a network pre-trained on images
of almost 10-times larger and the existence of dropout
with a high probability before the output layer.

4.3. Results on VIPeR

Implementation details: For the VIPeR dataset, the
batch size was set to 158. We split it into five clusters
containing 2, 4, 7, 3, and 4 attributes by thresholding
at within cluster sum of squares 7 = 1.8, trained our
models for 5,000 epochs, and set 1 = 0.25.

Evaluation results: To demonstrate the superiority of
the proposed approach over normal multi-task learning
approaches, we evaluate in Table 2 its performance in
comparison with the method of Zhu et al. [29] and a
typical multi-task learning framework. To test for sta-
tistical significance between CILICIA and the method
of Zhu et al. [29] we employed the z-test (p < 0.05)
since the mean and the standard deviation results were
available from their technique. Employing the proposed
multi-task curriculum learning approach is beneficial
for the classification of visual attributes, as it outper-
formed the previous state-of-the-art by improving the
total results by 9.9%. CILICIA achieved significantly
better results in most of the tasks, which demonstrates
the efficacy of our method over traditional multi-task
learning approaches. The reason for this is that when
some tasks are completely unrelated then multi-task
learning has a negative effect as it forces the network
to learn representations that explain everything, which
is not possible. Additionally, we observed that color at-
tributes tend to achieve higher performance compared
to other attributes. The reason for this is that such at-
tributes are highly imbalanced (sometimes more than
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Table 2: Performance comparison on the VIPeR dataset.
Five clusters were formed and attributes are in descend-
ing order based on their intra cross-correlation. Results
highlighted with light purple indicate statistically sig-
nificant improvement using the z-test.

Visual Attribute ~ Multi-Task Zhu et al. [29] CILICIA
Learning
barelegs 79.6 +0.8 84.1 1.1 88.6 + 0.4
shorts 76.8 + 1.1 81.7+13 89.6 + 0.6
lightshirt 79.5+09 83.0+1.2 84.6 + 0.6
nocoats 743+ 13 71.3+0.8 75.0 £ 0.3
blueshirt 69.9 + 1.7 69.1 £33 90.2 + 1.2
midhair 743+ 13 76.1+ 1.8 77.7 £ 0.6
lightbottoms 79.0 £ 1.0 76.4 +1.2 75112
redshirt 792+ 19 919+ 1.0 93.6 + 0.4
nolightdarkjeans ~ 87.1 + 1.6 90.7 £ 2.0 96.0 + 0.5
greenshirt 703 +2.4 759+59 95.1+0.4
hashandbag 66.9 + 3.1 42.0+6.5 90.8 + 0.6
hassatchel 725 +£0.8 57.8+2.7 728 + 0.4
skirt 67.2+3.7 78.1+3.5 94.8 + 0.6
darkbottoms 68.1 +0.9 78.4 £ 0.7 763 +0.9
male 715+19 69.6 £ 2.6 81.0 + 1.9
patterned 67.4+35 57.9+9.2 92.2 +0.7
darkshirt 710+ 1.4 823+14 843+ 0.5
jeans 749 £ 0.7 775+ 0.6 76.2 £ 0.6
darkhair 70.1 £2.0 73.1+2.1 718+ 1.3
hasbackpack 684+ 1.4 649+ 1.2 76.1 + 1.6
Total Av. 734+12 741+ 1.0 84.0 + 0.8

one to nine) due to the way annotation is provided (e.g.,
is the human wearing a red t-shirt or not). Note that,
since in both the SoBiR and the VIPeR datasets, the
training set is not fixed and train-test splits are per-
formed each time, the sequence in which the groups of
tasks are learned is not necessarily the same each time.
The reason for this is that the hierarchical agglomera-
tive clustering depends on the pairwise correlation ma-
trix between the labels of the training set which vary
between different splits.
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Figure 7: Classification performance for the low-
correlated attributes under different viewpoints. For vi-
sualization purposes, we group attributes (e.g., “dark-
hair” and “midhair” correspond to “hair”).

Impact of facial information: To investigate the im-
pact of facial information in the classification, we
trained the proposed architecture with images of hu-
mans after removing the upper part of the image con-
taining the face (top 20% of the image). From the
results in Table 3, we observed that the performance
of the visual attributes related to clothes or objects of
the upper body was not affected by the absence of fa-
cial information. On the contrary, the impact on the
hair-related attributes was significant since their perfor-
mance dropped by 6%. Finally, facial information plays
a vital role in recognizing the gender of humans even in
low-resolution images as a 5.3% performance drop was
observed in the absence of the face.

Impact of viewpoint: Aiming to investigate to
what extent the camera viewpoint affects the classi-
fication performance, we report classification results
over the weakly-correlated attributes depending on
the camera angle. VIPeR images are captured from
0°,45°,90°, 135, and 180° degrees and the obtained
results are depicted in Figure 7. It can be observed
that visual attributes related to shirt color are viewpoint-



invariant, whereas others such as “jeans” perform better
from a frontal angle. Two interesting observations arise
from the hair and backpack attributes. First, classify-
ing attributes pertaining to hair (length and color) can
be done with higher accuracy when the viewpoint is at
90°. Second, finding whether the human has a back-
pack or not becomes an easier task for camera angles
of 135% and 180 which is compatible with the way hu-
mans would perform on this task.

4.4. Results on PETA

Implementation details: For the PETA dataset, the
batch size was set to 190. We split it into five clusters
containing 2, 11, 4, 10, and 18 attributes by threshold-
ing at within cluster sum of squares 7 = 3, trained our
models for 5,000 epochs, and set 1 = 0.2.

Evaluation results: Since the training size of the
PETA dataset is significantly higher than the rest (al-
most 10,000) and the annotations provided are 45 in-
stead of 20, some very interesting observations can be
made from the clusters of visual attributes depicted in
Figure 8. The turquoise cluster comprises attributes re-
lated to upper and lower body formal clothes along with
black and leather footwear, and thus it is beneficial if we
learn these attributes at the same time. Other examples
that follow to our intuition and semantic understanding
are the fact that being male is very strongly connected
with having short hair and not carrying any type of bag,
or that carrying a backpack is linked with being less than
30 years old. The proposed learning approach employs
this information from attributes strongly connected on
the PETA dataset and outperformed the recent method
of Zhu et al. [73].

Since many attributes are highly imbalanced and the
classification accuracy as an evaluation metric is not
sufficient by itself they also reported recall rate results
when the false positive rate is equal to 10% as well as
the area under the ROC curve (AUC). Following the
same evaluation protocol, we tested the proposed multi-
task curriculum learning method on the PETA dataset
and report our results in comparison with those of Zhu

Table 3: Performance comparison of the weakly corre-
lated visual attributes when the face exists and it is ab-
sent in the input image. Attributes are grouped based on
where they correspond to the human body.

Upper Body Lower Body Hair  Gender
Entire Image 85.3 84.8 74.7 81.0
No Face 83.2 854 68.7 75.7
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et al. [73] after grouping the attributes in Table 4. Al-
though our method is not part-based, as it does not split
the human image into parts which are then learned in-
dividually, it outperforms the part-based method of Zhu
et al. [73] in all types of visual attributes under all
evaluation metrics. Due to highly imbalanced data (the
imbalance ratio in most of the categories is relatively
high), the improvement in the classification accuracy is
minor. However, for the rest of the evaluation metrics,
our method improved the average recall rate by 3.93%
and the AUC by 1.94%. In Figure 9 the ROC curves
of some tasks in which our method performed really
well (e.g., “blue shirt”), reasonably well (e.g.,“ “gender”),
and adequately (e.g.,”has backpack”) are depicted. The
complete results on the PETA dataset are provided in
Table 6.

5. Ablation Studies and Performance Analysis

5.1. Is Hierarchical Clustering Beneficial?

An important question that arises while analyzing the
performance of CILICIA on attribute classification is,
what is the impact of the group split using hierarchical
clustering along with the proposed learning paradigm
which guides the training process? To what extent can
the obtained results be accustomed to using a deep-
learning multi-task classification scheme? To answer
such questions, we conducted a detailed experimen-
tal evaluation on the VIPeR dataset [74] for a differ-
ent number of groups that were split with two different
methods. The first group split is performed after sorting
the total cross-correlations for each attribute using Eq.
(3), in descending order, and splitting the attributes to
a fixed number of groups. For example, for the VIPeR
dataset, we compute for each attribute the sum of cross-
correlations with the rest, which results in a 20 X 1 vec-
tor. After sorting this vector, we split it into N number
of groups depending on the number of groups that we
are interested in investigating. The second way to split
the visual attributes into groups is by employing the
proposed approach (described in Section 3.2). In Fig-
ure 10, we demonstrate the average classification accu-
racy over all visual attributes of the VIPeR dataset [74]
for a different number of groups, using the two methods
described. We observe that splitting into groups using a
hierarchical top-down method yields better results in all
groups and that for the VIPeR dataset, five clusters are
the optimal number of groups.

5.2. Why is Knowledge Transfer important?
To assess the impact of transferring knowledge from
groups of tasks which have already converged to ones



Within Cluster Sum of Squares

Male

o
Lb_Casual —

Ub_Shortsleeve

Ac_Muffier

Car_PlasticBags

Lb_Black

Whit
G

Ub_Gray
G

Ub_Black
I
Lb_Blue
Lb_Jeans
H_long

Lb_Trousers

Figure 8: Dendrogram of the visual attributes of the PETA training set. For WCSS equal to 3, five clusters are formed.
The learning sequence of the clusters is green, left purple, red, right purple and turquoise. (Lb. - Lower Body, Ub. -
Upper Body, Car. - Carrying, Ac. - Accessory, Fw. Footwear, Hr. - Hair, and A. - Age ).

1
X:0.1029

o o
> o

True Positive Rate
o
=

Y:0.8519
B X:0.1006
Y:0.8207
r X:0.1004
Y:0.6427
—Gender
Backpack
—Blue shirt
I L |
107 107 10°
False Positive Rate

o
)

0
10°

Figure 9: ROC curves for the visual attributes of “gen-
der”, “blue shirt”, and “has backpack”. The x-axis is
in semi-logarithmic scale and the depicted values corre-
spond to the recall rate (%) when the false positive rate
is 10%.

that have not been learned yet we conducted an ablation
experiment. We selected the four most correlated and
the four least correlated attributes of the PETA dataset
so as to form the two groups of strongly and weakly
correlated attributes. We compare the classification ac-
curacy of the selected tasks with and without knowledge
transfer. When no knowledge is transferred to the latter
group, we are simply training two multi-task classifi-
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cation frameworks. We report the obtained results in
the last two columns of Table 5. Transferring knowl-
edge from a strongly correlated group of tasks to the
weakly improves the performance of the latter by 1.89%
compared to a typical multi-task classification learning
framework.

5.3. Why use Correlation as a Criterion for Group
Split?

To demonstrate the effectiveness of clustering at-
tributes into groups based on their cross correlation we
conducted an ablation study using the same eight at-
tributes (as in Section 5.2) from the PETA dataset. How-
ever, in this experiment, instead of grouping them based
on their cross-correlation, we randomly assign them to
two groups. We follow exactly the same two-stage
process (i.e., learning one group first and transferring
knowledge to the second which is learned right after)
and report the obtained results in the first column of
Table 5. We observe that learning in correlation-based
groups of tasks is beneficial as CILICIA with and with-
out knowledge transfer performs better than learning at
random. Additionally, transferring knowledge between
attributes that do not co-occur (or they are semantically



Table 4: Performance comparison on the PETA dataset for different types of attributes. The imbalance ratio is defined
as the ratio of the number of instances in the majority class to the number of examples in the minority class in the

training set.

Accuracy (%)

Recall rate (%) @FPR = 10% AUC (%)

Visual Attribute Imbalance Ratio

Zhu et al. [73] CILICIA Zhuetal. [73]

CILICIA  Zhuetal. [73] CILICIA

Accessories 7.63 93.11 93.48 75.68 76.66 91.06 92.13
Carrying Bags 5.01 83.68 84.78 57.21 62.73 82.79 85.63
Footwear 4.69 83.41 83.74 59.09 60.88 84.44 85.18
Hair 4.57 89.54 89.96 75.89 80.43 90.95 93.18
Lower Body 3.54 85.05 85.66 64.92 66.95 87.37 88.26
Upper Body 8.06 89.60 90.48 69.88 76.12 88.66 91.68
Age 7.05 87.84 87.90 71.03 72.49 88.93 90.24
Gender 1.22 84.34 87.59 74.80 82.04 91.74 93.84
Total Av. 6.07 87.23 87.91 67.29 71.22 87.66 89.60
5249 | ocross-comelation based spit Table 5: Ablation experiments to assess the effective-
%Z;Z Hierarchical clustering based split ness of knowledge transfer and correlation-based split.
; 630 ] In the random split column, the strongly and weakly
Faos groups refer only to the learning sequence as the split
% 820 is not based on the correlation. CILICIA (w/o kt) corre-
Osts sponds to learning in correlation-split groups but with-
geto H out knowledge transfer.
2805 ﬂ
80.0 ; " s 5 " Group  Random Split CILICIA (w/o kt) CILICIA
Number of Groups Strongly ~ 65.36 76.01 76.01
Figure 10: Average classification accuracy over all vi- Weakly 63.08 69.91 71.80
Total 64.22 72.95 73.91

sual attributes of the VIPeR dataset, for different num-
ber of group splits. The cross-correlation based split
refers to grouping the tasks based on their total cross-
correlation with the rest after arranging them in a de-
scending order. The hierarchical clustering based split
corresponds to the proposed approach described in Al-
gorithm 1.

completely different) has an adverse effect on the per-
formance. The obtained results are in line with previous
methods that can be found in the literature [79, 80] that
have exploited label correlations to improve multi-task
learning.

5.4. Why is the Proposed Curriculum the Right One?

We argue that task similarity and thus the curricu-
lum is not binary, but resides on a spectrum. In the
same way that humans learn with different curricula de-
pending on the task, the process of finding a curricu-
lum that is beneficial for all tasks cannot have an opti-
mal single solution. Learning in correlation-split groups
showed promising results (Tables 1 and 5) which led
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us to start considering how can we improve the perfor-
mance. Transferring knowledge between related tasks
is not beneficial as during the joint multi-task learning
training the parameter sharing plays that role. Transfer-
ring knowledge from randomly-split groups also proved
to be ineffective (Table 5). We then investigated whether
the work of Bengio et al. [13], which proposed a cur-
riculum based on what is easier to learn first, would add
value. We believe that the knowledge transfer from the
strongly to the weakly correlated group of tasks is a rea-
sonable easy-to-hard curriculum which resembles to the
definition of Bengio ef al. [13]. In addition, note that
when Bengio ef al. [13] introduced curriculum learn-
ing after they defined an entropy-based curriculum they
demonstrated that introducing gradually more difficult
examples speeds-up online training. In our paper, this
can be observed in the convergence plot (Figure 5) in
which the subgroups converge faster and with a smaller
loss (average among tasks).



5.5. Performance Analysis and Limitations

The proposed approach outperformed the state-of-
the-art in all datasets and demonstrated better results
over the rest of the learning paradigms on the SoBiR
dataset. The main reasons for this are: (i) we ex-
ploited the correlation between different attributes and
split them into clusters using hierarchical clustering; (ii)
we proposed a learning paradigm to learn the group of
attributes in a curriculum learning framework and clas-
sify them in a multi-task classification setup; and (iii)
we leveraged the already learned clusters of visual at-
tributes which had converged to transfer knowledge to
groups that were about to be learned to improve the per-
formance and enhance the stability of our method.

Despite its success and good performance, the pro-
posed approach has a few limitations and inefficien-
cies. First, the existence of a fully-connected layer after
the last convolutional layer increases significantly the
number of parameters that need to be learned for each
task. We partially addressed this by freezing most of
the network and employed a small number of units in
the fully-connected layer. This inefficiency is known
for the VGG network and was addressed by more recent
networks that such as the GoogLeNet [81], the ResNet
[68] or the Highway Networks [82]. However, these
networks were not suitable for CILICIA because of the
way training is performed (i.e., in all three networks, the
same inputs travel through different paths and different
number of layers). Second, the proposed approach con-
tains two additional parameters that need to be cross-
validated thoroughly. The first parameter is A, which
controls the contribution of the already learned groups
of clusters and is found in several methods that perform
transfer learning or knowledge distillation [60, 59]. For
this parameter, we experimented on the validation set
with different parameters (namely 0.25, 0.5, 0.75 and
1) and observed that a 25% contribution of the already
learned clusters of visual attributes was the most effec-
tive. The second parameter is the within-cluster sum of
squares threshold which controls the number of clusters
formed. Finally, the goal of the proposed approach was
to classify the visual attributes of humans, the full body
of whom was always fully-visible. Thus, it was tested in
re-identification datasets, which contain pairs of images
of humans standing or walking, and outperformed the
state-of-the-art without even following a part-based ap-
proach. For datasets such as the Berkeley Attributes of
People dataset [27], which comprises humans of vary-
ing poses with parts of their body either not visible
or occluded, part-based (or poselet-based) approaches
[28, 24, 23] have proven to be very effective recently.
To address these challenges, CILICIA would have to
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be adapted to work with poselets or body-parts (i.e.,
in which order the body parts need to be learned so as
to transfer information between groups of tasks) which
was outside the scope of this paper.

6. Conclusion

Given a set of tasks that need to be learned we sought
to find an answer to how we can learn them effectively
and what would be the optimal way in terms of perfor-
mance, speed, and simplicity. Learning each task sepa-
rately, although very simple, lacks in terms of perfor-
mance since it does not exploit the information from
other tasks. Learning all tasks at the same time in a
multi-task classification scenario is relatively fast, easy
to implement, and employs knowledge from other tasks
to boost the classification performance. Curriculum
learning is a learning scheme in which samples or tasks
are not treated as equally easy or hard, but are instead
presented to the model in a meaningful way so as to in-
crease generalization and performance. Since learning
a large number of tasks one at a time is computationally
expensive, we opted for learning clusters of tasks in a
curriculum. In each cluster of visual attributes, we pro-
posed to learn the corresponding tasks in a multi-task
classification setup.

Our proposed method, CILICIA, finds the sequence
in which clusters of visual attributes are learned very
efficiently, and classifies them with high performance.
Given images of standing humans as an input, we
performed end-to-end learning by solving multiple bi-
nary classification problems simultaneously. Tasks
were grouped into clusters by employing hierarchi-
cal agglomerative clustering based on their correlation.
The sequence (i.e., curriculum) in which clusters were
learned was found by computing the average cross-
correlation within each cluster and sorting the obtained
values in a descending order. During training of weakly
correlated clusters of tasks, we leveraged the knowl-
edge already learned from clusters which demonstrated
stronger correlation. By these means, we combined the
advantages of both multi-task and curriculum learning
paradigms; since our method converges fast, it is effec-
tive and employs prior knowledge. We evaluated our
method in three datasets and outperformed the state-of-
the-art by 9.9% on the VIPeR dataset and by a recall
rate of almost 4% (when the false positive rate is fixed
and equal to 10%) on the PETA dataset despite the fact
that no body part-specific information was employed.
The obtained results demonstrate the effectiveness and,
at the same time, the great potential of multi-task cur-
riculum learning.



Acknowledgments

This work has been funded in part by the UH Hugh
Roy and Lillie Cranz Cullen Endowment Fund. The
work of C. Nikou is supported by the European Com-
mission (H2020-MSCA-IF-2014), under grant agree-
ment No 656094. All statements of fact, opinion or
conclusions contained herein are those of the authors
and should not be construed as representing the official
views or policies of the sponsors.

References

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

N. Sarafianos, T. Giannakopoulos, C. Nikou, I. A. Kakadiaris,
Curriculum learning for multi-task classification of visual at-
tributes, arXiv preprint arXiv:1708.08728. 2

V. Vapnik, A. Vashist, A new learning paradigm: Learning using
privileged information, Neural Networks 22 (5-6) (2009) 544—
57.2

S. Motiian, M. Piccirilli, D. A. Adjeroh, G. Doretto, Informa-
tion bottleneck learning using privileged information for visual
recognition, in: Proc. IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, 2016. 2

D. Pechyony, R. Izmailov, A. Vashist, V. Vapnik, SMO-style
algorithms for learning using privileged information, in: Proc.
International Conference on Data Mining, Las Vegas, NV, 2010.
2

V. Sharmanska, N. Quadrianto, C. H. Lampert, Learning to rank
using privileged information, in: Proc. IEEE International Con-
ference on Computer Vision, Sydney, Australia, 2013. 2

S. Wang, D. Tao, J. Yang, Relative attribute SVM+ learning for
age estimation, IEEE Transactions on Cybernetics 46 (3) (2015)
827-839. 2

I. A. Kakadiaris, N. Sarafianos, C. Nikou, Show me your body:
Gender classification from still images, in: IEEE International
Conference on Image Processing, Phoenix, AZ, 2016. 2

M. Vrigkas, C. Nikou, I. A. Kakadiaris, Exploiting privileged
information for facial expression recognition, in: Proc. IEEE In-
ternational Conference on Biometrics, Halmstad, Sweden, 2016.
2

N. Sarafianos, C. Nikou, I. A. Kakadiaris, Predicting privileged
information for height estimation, in: Proc. International Con-
ference on Pattern Recognition, Cancun, Mexico, 2016. 2

Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste,
W. Di, Y. Yu, HD-CNN: Hierarchical deep convolutional neu-
ral network for large scale visual recognition, in: Proc. IEEE
International Conference on Computer Vision, Santiago, Chile,
2015. 2

L. Zhang, P. Dou, S. K. Shah, I. A. Kakadiaris, Hierarchical
multi-label framework for robust face recognition, in: Proc.
IEEE International Conference on Biometrics, Phuket, Thai-
land, 2015. 2

L. Zhang, S. K. Shah, I. A. Kakadiaris, Hierarchical multi-label
classification using fully associative ensemble learning, Pattern
Recognition 70 (2017) 89-103. 2

Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum
learning, in: Proc. International Conference on Machine Learn-
ing, Montreal, Canada, 2009. 2, 3, 13

L. Jiang, D. Meng, S.-I. Yu, Z. Lan, S. Shan, A. Hauptmann,
Self-paced learning with diversity, in: Advances in Neural In-
formation Processing Systems, Montreal, Canada, 2014. 2

15

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

T. Matiisen, A. Oliver, T. Cohen, J. Schulman, Teacher-student
curriculum learning, arXiv preprint arXiv:1707.00183. 2

V. Ferrari, A. Zisserman, Learning visual attributes, in: Proc.
Advances in Neural Information Processing Systems, Vancou-
ver, Canada, 2007. 3

N. Kumar, A. Berg, P. N. Belhumeur, S. Nayar, Describ-
able visual attributes for face verification and image search,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33 (10) (2011) 1962-1977. 3

W. J. Scheirer, N. Kumar, P. N. Belhumeur, T. E. Boult, Multi-
attribute spaces: Calibration for attribute fusion and similarity
search, in: Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, Providence, RI, 2012. 3

A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects
by their attributes, in: Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition, Miami, FL, 2009. 3

W. Wang, Y. Yan, S. Winkler, N. Sebe, Category specific dictio-
nary learning for attribute specific feature selection, IEEE Trans-
actions on Image Processing 25 (3) (2016) 1465-1478. 3

J. Zheng, Z. Jiang, R. Chellappa, Submodular attribute selection
for visual recognition, IEEE Transactions on Pattern Analysis
and Machine Intelligence. 3

A. Krause, D. Golovin, Submodular function maximization,
Tractability: Practical Approaches to Hard Problems 3 (19)
(2012) 1-8. 3

Y. Li, C. Huang, C. C. Loy, X. Tang, Human attribute recogni-
tion by deep hierarchical contexts, in: Proc. European Confer-
ence on Computer Vision, Amsterdam, The Netherlands, 2016.
3,14

G. Gkioxari, R. Girshick, J. Malik, Contextual action recogni-
tion with R*CNN, in: Proc. IEEE International Conference on
Computer Vision, Santiago, Chile, 2015. 3, 14

P. Sudowe, H. Spitzer, B. Leibe, Person attribute recognition
with a jointly-trained holistic CNN model, in: Proc. IEEE Inter-
national Conference on Computer Vision Workshops, Boston,
MA, 2015. 3

N. Zhang, M. Paluri, M. Ranzato, T. Darrell, L. Bourdev,
PANDA: Pose aligned networks for deep attribute modeling, in:
Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition, Columbus, OH, 2014. 3

L. Bourdev, S. Maji, J. Malik, Describing people: A poselet-
based approach to attribute classification, in: Proc. IEEE In-
ternational Conference on Computer Vision, Barcelona, Spain,
2011. 3, 14

G. Gkioxari, R. Girshick, J. Malik, Actions and attributes from
wholes and parts, in: Proc. IEEE International Conference on
Computer Vision, Santiago, Chile, 2015. 3, 14

J. Zhu, S. Liao, D. Yi, Z. Lei, S. Z. Li, Multi-label CNN
based pedestrian attribute learning for soft biometrics, in: Proc.
IEEE International Conference on Biometrics, Phuket, Thai-
land, 2015. 3,9, 10

A. Sharif Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN
features off-the-shelf: an astounding baseline for recognition, in:
Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, Columbus, OH, 2014. 3

J. Yang, B. Price, S. Cohen, H. Lee, M.-H. Yang, Object con-
tour detection with a fully convolutional encoder-decoder net-
work, in: Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, Las Vegas, NV, 2016. 3

J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are
features in deep neural networks?, in: Proc. Advances in Neural
Information Processing Systems, Montreal, Canada, 2014. 3, 4
C. Su, S. Zhang, J. Xing, W. Gao, Q. Tian, Deep attributes
driven multi-camera person re-identification, arXiv preprint
arXiv:1605.03259. 3



(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

Z. Shi, T. M. Hospedales, T. Xiang, Transferring a semantic
representation for person re-identification and search, in: Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, 2015. 3

S. Park, B. X. Nie, S.-C. Zhu, Attribute and-or grammar for
joint parsing of human attributes, part and pose, arXiv preprint
arXiv:1605.02112. 3

N. Sarafianos, B. Boteanu, B. Ionescu, I. A. Kakadiaris, 3D hu-
man pose estimation: A review of the literature and analysis
of covariates, Computer Vision and Image Understanding 152
(2016) 1-20. 3

M. Livne, L. Sigal, N. F. Troje, D. J. Fleet, Human attributes
from 3d pose tracking, Computer Vision and Image Understand-
ing 116 (5) (2012) 648-660. 3

X. Xu, I. A. Kakadiaris, Joint head pose estimation and face
alignment framework using global and local cnn features, in:
Proc. 12th IEEE Conference on Automatic Face and Gesture
Recognition, Washington, DC, Vol. 2, 2017. 3

Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, S. Yan, Deep
domain adaptation for describing people based on fine-grained
clothing attributes, in: Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition, Boston, MA, 2015. 3

J. Huang, R. S. Feris, Q. Chen, S. Yan, Cross-domain image re-
trieval with a dual attribute-aware ranking network, in: Proc.
IEEE International Conference on Computer Vision, Boston,
MA, 2015. 3

J. Song, Y.-Z. Song, T. Xiang, T. M. Hospedales, X. Ruan, Deep
multi-task attribute-driven ranking for fine-grained sketch-based
image retrieval, in: Proc. British Machine Vision Conference,
York, UK, 2016. 3

C. H. Lampert, H. Nickisch, S. Harmeling, Attribute-based clas-
sification for zero-shot visual object categorization, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 36 (3)
(2014) 453-465. 3

D. Jayaraman, K. Grauman, Zero-shot recognition with unreli-
able attributes, in: Proc. Advances in Neural Information Pro-
cessing Systems, Montreal, Canada, 2014. 3

Z. Shi, Y. Yang, T. Hospedales, T. Xiang, Weakly-supervised
image annotation and segmentation with objects and attributes,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence. 3

L. Liu, A. Wiliem, S. Chen, K. Zhao, B. C. Lovell, Determining
the best attributes for surveillance video keywords generation,
in: Proc. IEEE International Conference on Identity, Security
and Behavior Analysis, Sendai, Japan, 2016. 3

D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neu-
ral networks for image classification, in: Proc. IEEE Conference
on Computer Vision and Pattern Recognition, Providence, RI,
2012. 3

Y. Yang, T. M. Hospedales,
multi-domain  and multi-task
arXiv:1412.7489. 3

E. M. Hand, R. Chellappa, Attributes for improved attributes:
A multi-task network for attribute classification, arXiv preprint
arXiv:1604.07360. 3

S. Ruder, An overview of multi-task learning in deep neural net-
works, arXiv preprint arXiv:1706.05098. 3

A. Pentina, V. Sharmanska, C. H. Lampert, Curriculum learn-
ing of multiple tasks, in: Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, 2015. 3

J. Yang, R. Yan, A. G. Hauptmann, Cross-domain video concept
detection using adaptive svms, in: Proc. 15th ACM International
Conference on Multimedia, 2007, pp. 188-197. 3

N. Sarafianos, M. Vrigkas, I. A. Kakadiaris, Adaptive SVM+:
Learning with privileged information for domain adaptation,

A unified perspective on
learning, arXiv preprint

16

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

arXiv preprint arXiv:1708.09083. 3

V. Cirik, E. Hovy, L.-P. Morency, Visualizing and understand-
ing curriculum learning for long short-term memory networks,
arXiv preprint arXiv:1611.06204. 3

W. Zaremba, I. Sutskever, Learning to execute, arXiv preprint
arXiv:1410.4615. 3

Q. Dong, S. Gong, X. Zhu, Multi-task curriculum transfer deep
learning of clothing attributes, arXiv preprint arXiv:1610.03670.
3

M. Long, J. Wang, M. L. Jordan, Deep transfer learning with
joint adaptation networks, arXiv preprint arXiv:1605.06636. 3
Y. Bengio, et al., Deep learning of representations for unsuper-
vised and transfer learning, ICML Unsupervised and Transfer
Learning 27 (2012) 17-36. 3

G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a
neural network, arXiv preprint arXiv:1503.02531. 4

B. Zhang, L. Wang, Z. Wang, Y. Qiao, H. Wang, Real-time ac-
tion recognition with enhanced motion vector CNNs, in: Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, 2016. 4,7, 14

D. Lopez-Paz, B. Scholkopf, L. Bottou, V. Vapnik, Unifying
distillation and privileged information, in: Proc. International
Conference on Learning Representations, San Jose, Puerto Rico,
2016. 4, 14

D. Jayaraman, F. Sha, K. Grauman, Decorrelating semantic vi-
sual attributes by resisting the urge to share, in: Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, Colum-
bus, OH, 2014. 4

K. Simonyan, A. Zisserman, Very deep convolutional networks
for large-scale image recognition, in: Proc. International Con-
ference on Learning Representations, San Diego, CA, 2015. 4
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., Im-
ageNet large scale visual recognition challenge, International
Journal of Computer Vision 115 (3) (2015) 211-252. 4

S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep
network training by reducing internal covariate shift, arXiv
preprint arXiv:1502.03167. 4

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, Dropout: a simple way to prevent neural net-
works from overfitting, Journal of Machine Learning Research
15 (1) (2014) 1929-1958. 4

I. Sutskever, J. Martens, G. E. Dahl, G. E. Hinton, On the im-
portance of initialization and momentum in deep learning, in:
Proc. International Conference on Machine Learning, Atlanta,
GA, 2013. 4

A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classifi-
cation with deep convolutional neural networks, in: Proc. Ad-
vances in neural information processing systems, Lake Tahoe,
2012. 5

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for im-
age recognition, in: Proc. IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, 2016. 5, 14

D. Martinho-Corbishley, M. S. Nixon, J. N. Carter, Soft bio-
metric retrieval to describe and identify surveillance images, in:
Proc. IEEE International Conference on Identity, Security and
Behavior Analysis, Miyagi, Japan, 2016. 6, 7, 8

D. Adjeroh, D. Cao, M. Piccirilli, A. Ross, Predictability and
correlation in human metrology, in: Proc. IEEE International
Workshop on Information Forensics and Security, Seattle, WA,
2010. 5

Z. Niu, M. Zhou, L. Wang, X. Gao, G. Hua, Ordinal regression
with multiple output CNN for age estimation, in: Proc. IEEE
Conference on Computer Vision and Pattern Recognition, Las
Vegas, NV, 2016. 5



[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

(82]

W.J. H. Jr., Hierarchical grouping to optimize an objective func-
tion, Journal of the American statistical association 58 (301)
(1963) 236-244. 6

J. Zhu, S. Liao, Z. Lei, S. Z. Li, Multi-label convolutional neu-
ral network based pedestrian attribute classification, Image and
Vision Computing. 7, 8, 11, 13, 18

D. Gray, S. Brennan, H. Tao, Evaluating appearance models for
recognition, reacquisition, and tracking, in: Proc. IEEE Interna-
tional Workshop on Performance Evaluation for Tracking and
Surveillance, Rio, Brazil, 2007. 7, 8, 11

Y. Deng, P. Luo, C. C. Loy, X. Tang, Pedestrian attribute recog-
nition at far distance, in: Proc. ACM International Conference
on Multimedia, Orlando, FL, 2014. 7, 8

D. Parikh, K. Grauman, Relative attributes, in: Proc. IEEE In-
ternational Conference on Computer Vision, Barcelona, Spain,
2011. 8

R. Layne, T. M. Hospedales, S. Gong, Attributes-based re-
identification, Springer, 2014, pp. 93-117. 8

R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training
recurrent neural networks, in: Proc. International Conference on
Machine Learning, Atlanta, GA, 2013. 9

S.-J. Huang, Z.-H. Zhou, Z. Zhou, Multi-label learning by ex-
ploiting label correlations locally., in: Proc. AAAI, Toronto,
Canada, 2012. 13

B. Hariharan, L. Zelnik-Manor, M. Varma, S. Vishwanathan,
Large scale max-margin multi-label classification with priors,
in: Proc. International Conference on Machine Learning, Haifa,
Israel, 2010. 13

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with con-
volutions, in: Proc. IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, 2015. 14

R. K. Srivastava, K. Greff, J. Schmidhuber, Highway networks,
arXiv preprint arXiv:1505.00387. 14

17



Table 6: Appendix A - Complete Results on the PETA dataset: Performance comparison on the PETA dataset for
different types of attributes. The imbalance ratio is defined as the ratio of the number of instances in the majority
class to the number of examples in the minority class in the training set. An asterisk next to an attribute denotes that
it belongs to the strongly correlated group of tasks.

Visual Attribute Imbalance Ratio Accuracy (%) Recall rate (%) @FPR = 10% AUC (%)
Zhu et al. [73] CILICIA Zhuetral [73] CILICIA Zhueral. [73] CILICIA

accessoryHat* 8.78 96.05 96.56 86.06 85.23 92.62 92.28
accessoryMufHler* 11.06 97.17 97.04 88.42 91.23 94.47 95.62
accessoryNothing 3.03 86.11 86.45 52.57 51.93 86.09 86.75
carryingBackpack 4.01 84.30 84.82 58.40 64.20 85.19 89.62
carryingMessengerBag 2.37 79.58 80.59 58.30 60.13 82.01 83.35
carryingNothing 2.68 80.14 81.12 55.15 61.11 83.08 85.30
carryingOther 4.11 80.91 81.69 46.90 50.68 77.68 78.16
carryingPlasticBags* 11.87 93.45 94.72 67.30 76.11 86.01 90.77
footwearBlack 1.26 75.97 75.33 57.24 55.59 84.07 83.42
footwearBrown* 13.64 92.14 92.65 65.77 62.73 85.26 85.28
footwearGrey 5.40 87.07 88.07 50.80 60.54 80.92 84.54
footwearLeatherShoes 2.39 85.26 86.16 72.28 76.79 89.84 90.96
footwearShoes 1.75 75.78 76.95 52.80 55.52 81.63 81.73
footwearSneakers* 3.67 81.78 81.08 52.04 50.63 83.19 83.43
footwearWhite* 4.73 85.89 85.73 62.72 60.44 86.16 85.26
hairBlack 1.55 87.83 87.97 81.03 82.46 93.61 94.13
hairBrown 3.86 89.58 89.07 77.36 81.22 91.33 92.48
hairGrey* 11.36 95.25 95.09 74.91 80.65 89.42 91.65
hairLong 3.23 88.12 88.21 76.49 78.93 90.55 92.15
hairShort* 2.84 86.93 87.03 69.68 69.28 89.84 90.38
lowerBodyBlack 1.08 83.86 85.41 71.21 79.42 90.84 92.83
lowerBodyBlue* 4.51 88.64 89.53 77.26 80.16 90.81 92.06
lowerBodyCasual 6.33 90.54 89.58 56.23 58.76 87.49 88.19
lowerBodyFormal 6.45 90.86 90.87 72.52 72.94 87.79 88.94
lowerBodyGrey* 3.10 82.07 81.85 53.43 51.73 82.77 83.33
lowerBodyJeans* 2.28 83.13 82.57 67.59 64.85 87.71 86.46
lowerBodyTrousers* 1.06 76.26 75.90 56.19 54.77 84.16 83.34
personalLarger60* 16.21 97.58 97.24 90.71 90.33 94.94 95.96
personalLess30 1.00 81.05 81.84 63.75 67.34 88.50 89.42
personalLess45 2.03 79.87 79.39 59.42 58.64 84.62 85.25
personalLess60* 8.96 92.84 93.21 70.22 71.94 87.66 88.03
personalMale* 1.22 84.34 86.03 74.80 77.87 91.74 92.85
upperBodyBlack 1.25 86.21 86.86 80.11 82.07 93.06 94.07
upperBodyBlue* 12.05 94.53 95.74 76.19 84.64 90.92 94.51
upperBodyBrown* 12.59 93.25 94.20 68.60 79.80 87.58 92.54
upperBodyCasual* 5.98 89.25 80.00 62.14 61.45 87.17 85.08
upperBodyFormal 6.66 91.12 90.33 70.48 74.47 87.57 89.60
upperBodyGrey 4.56 84.39 84.46 55.33 63.38 82.99 87.44
upperBodyJacket* 13.20 92.34 93.04 53.37 63.10 80.98 85.27
upperBodyLongSleeve 4.98 87.88 87.96 74.29 80.69 89.97 92.72
upperBodyOther* 1.22 81.97 81.58 73.19 71.83 88.50 88.14
upperBodyRed* 17.66 96.33 96.64 86.77 90.82 94.69 96.16
upperBodyShortSleeve 5.98 88.09 88.79 69.22 75.88 89.21 92.10
upperBodyTshirt* 10.53 90.59 90.80 63.51 68.65 88.73 90.55
upperBodyWhite 18.87 88.84 90.37 75.25 84.18 91.24 94.65
Strongly Cor. Av. 8.12 89.63 89.87 70.04 72.19 88.42 89.50
Weakly Cor. Av. 4.12 84.93 85.32 64.66 68.56 86.93 88.60
Total Av. 6.07 87.23 87.54 67.29 70.34 87.66 89.04
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